
Visual Basic Programming: Creating a Fraction Class

Why a Class?
Imagine that the company you work for is going to create a series of lessons on fractions. It might be

useful to create a Fraction class that all of the fraction lessons could use. A fraction has a numerator

and denominator. For instance 1/2 has a numerator of 1 and a denominator of 2. The denominator

should never be 0.

The string version of a fraction is the numerator, "/", and the denominator.

We can convert a fraction to decimal by dividing the numerator by the denominator (making sure

that the denominator is not zero, of course!)

We can create a Fraction class with all of the features above incorporated. This Fraction class can

then be used by anyone who writes one of the lessons on Fractions.

The Fraction Class
Start a new Visual Basic program called TestFraction. We will thoroughly test the class before we

let other programmers use it.

From the menu select Project-> Add Class. Name the class Fraction.

Write the code for the class as shown below. Notice that we never allow the denominator to be zero.

 Public Class Fraction
 Private pNumerator As Integer = 0
 Private pDenominator As Integer = 1
 Public Sub New()
 pNumerator = 0
 pDenominator = 1
 End Sub

 Public Sub New(ByVal numerator As Integer, ByVal denominator As Integer)
 pNumerator = numerator
 If denominator <> 0 Then
 pDenominator = denominator
 End If
 End Sub

 Public Overrides Function ToString() As String
 Return "" & pNumerator & "/" & pDenominator
 End Function

 Public Function ToDouble() As Double
 Return pNumerator / pDenominator
 End Function
End Class

Explanation

Notice that pNumerator and pDenominator are both private, with default values of 0 and 1. Making

these members private allows us to restrict the values assigned to them. In particular, we want to

make sure that the denominator is never zero.

New: The New method is called a constructor. When we create a New Fraction, the constructor

function is called. Our Fraction class has two constructors: New with no arguments and New with 2

arguments, the numerator and denominator.

Visual Basic Programming: Creating a Fraction Class

ToDouble: Because it is impossible for the denominator to ever be zero, we can convert it to a

decimal without checking whether the denominator is 0.

ToString: Every class has a ToString method. We want to write our own definition of what ToString

returns. We must override that predefined function with our own definition that will return the

numerator, a slash, and the denominator.

Now in the code for the form try each example below to create a new instance of the fraction class:

Example 1:

Public Class Form1
 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load
 Dim myFraction As New Fraction()
 Me.Text = myFraction.ToString
 End Sub
End Class

When you run this example you will see 0/1 in the text of the form. This example uses the

constructor New Fraction with no arguments. Notice that the default value for the numerator is 0 and

the numerator has a default value of 1. If we change the code to

Me.Text = myFraction.ToDouble we will see 0 in the text for the form.

Example 2:

Public Class Form1
 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load
 Dim myFraction As New Fraction(1, 0)
 Me.Text = myFraction.ToString
 End Sub
End Class

Can you guess what will display? Look at the code. The denominator is given a default value of 1

and the zero is NOT accepted so our fraction is 1/1.

Example 3:

Public Class Form1
 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load
 Dim half As New Fraction(1, 2)
 Me.Text = half.ToString & "=" & half.ToDouble
 End Sub
End Class

This time it will display 1/2 = 0.5

Try some additional examples such as 3/4 or 1/3. Try to guess what the output will be.

You can also change the value of the numerator or denominator using the set methods.

Make sure you understand all of the code before going on to the next example.

Visual Basic Programming: Creating a Fraction Class

To Do:

Add a text box for the numerator and denominator. Add labels to display the string; the decimal

value.

To Think About:
Every industry has objects that they deal with everyday: transactions, packages, customers, boxes,

printers, etc. How would you define any of these things as classes?

Get and Set

Usually private members have Get and Set methods. Add the following code to the Fraction class:

 Public Property Numerator() As Integer
 Get
 Return pNumerator
 End Get
 Set(numerator As Integer)
 pNumerator = numerator
 End Set
 End Property

 Public Property Denominator() As Integer
 Get
 Return pDenominator
 End Get
 Set(denominator As Integer)
 If denominator <> 0 Then
 pDenominator = denominator
 End If
 End Set
 End Property

This code will let you set and get the numerator as shown below:
Public Class Form1
 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load
 Dim myFraction As New Fraction(1, 4)
 myFraction.Numerator = 5
 Me.Text = myFraction.ToString & "=" & myFraction.ToDouble
 End Sub
End Class

When you run this you will see 5/4=1.25 A fraction that has a numerator that is bigger than its

denominator is called an improper fraction.

To Do:

Write a Boolean method Improper that returns True if the fraction is improper. Return False

otherwise.

Add a method ToStringProper that would return "1 1/4" instead of "5/4" (This is not an override.)

